РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ 7-9 КЛАСС
1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая учебная программа составлена на основе:
- Федерального компонента Государственного стандарта основного общего образования, по предмету алгебре для 7 - 9 классов на базовом уровне, приказ Минобразования России от 05.03.2004 г., № 1089;
- базисного учебного плана, 2015-2016уч.г.;
- примерной программы основного общего образования по математике;
- авторских программ Т.А. Бурмистровой «Алгебра. Сборник рабочих программ» и «Геометрия. Сборник рабочих программ».
Соответствует:
- Федеральному перечню учебников, учебно-методических и методических изданий, рекомендованных (допущенных) Министерства образования и науки РФ,
- требованиям к оснащению образовательного процесса.
Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники.С её помощью моделируются и изучаются явления и процессы,происходящие в природе.
Важнейшей задачей школьного курса математики является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников.
2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА
В курсе математики выделяются две основных содержательных направления: алгебра и геометрия. В курсе алгебры можно выделить следующие основные содержательные линии: «Арифметика»,«Алгебра»,«Функции»,«Вероятность и статистика». Наряду с этим в содержание включены два дополнительных методологических раздела: «Логика и множества»,«Математика в историческом развитии». В курсе геометрии условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии.
Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни.
Содержание линии «Алгебра» способствует формированиюу учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности.
Содержание раздела «Функции» нацелено на получениешкольниками конкретных знаний о функции как важнейшейматематической модели для описания и исследования разнообразных процессов. Изучение этого материала способствуетразвитию у учащихся умения использовать различные языки
математики (словесный, символический, графический), вноситвклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное ипрактическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализироватьинформацию, представленную в различных формах, пониматьвероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основкомбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числев простейших прикладных задачах.
При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основывероятностного мышления.
«Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка.
«Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.
Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.
Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира.
Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.
Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.
3. МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ
В соответствии с учебным планом школы в 7,8 классах предусмотрено 34 учебные недели (по 5 часов в неделю: 3 часа алгебры и 2 геометрии), в 9 классе – 33 учебные недели (по 5 часов в неделю: 3 часа алгебры и 2 геометрии). Поэтому данная учебная программа разработана на 505 часов, из которых 303 часа уходит на изучение алгебры и 202 часа – на изучение геометрии.
4. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА
Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
Предметные результаты обучения | Личностные результаты обучения | Метапредметные результаты обучения |
а) в алгебре: 1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения; 2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер; 3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах; 4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента; 5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики; 6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей; 7) овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий; 8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов. | 1) сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов; 2) сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики; 3) сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности; 4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры; 5) представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации; 6) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; 7) креативность мышления, инициатива, находчивость, активность при решении алгебраических задач; 8) умение контролировать процесс и результат учебной математической деятельности; 9) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений. | 1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; 2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы; 3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения; 4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей; 5) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы; 6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач; 7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение; 8) формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности); 9) формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов; 10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; 11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации; 12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации; 13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки; 14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; 15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; 16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; 17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; |
б) в геометрии: 1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, вектор, координаты) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления; 2) умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений; 3) овладение навыками устных, письменных, инструментальных вычислений; 4) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений; 5) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач; 6) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур; 7) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера. |
5. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Алгебра:
«Арифметика»
Рациональные числа. Расширение множества натуральныхчисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение , гдеm — целое число, n — натуральное. Степень с целым показателем.
Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степенис дробным показателем.
Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.
Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.
Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.
Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.
«Алгебра»
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.
Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен.
Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.
Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.
Рациональные выражения и их преобразования. Доказательство тождеств.
Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.
Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений.
Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.
Неравенства. Числовые неравенства и их свойства.
Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.
«Функции»
Основные понятия. Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.
Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций .
Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.
Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.
«Вероятность и статистика»
Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.
Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.
Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.
«Логика и множества»
Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.
Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.
Элементы логики. Понятие о равносильности, следовании, употребление логических связокесли ..., то ..., в том и только в том случае, логические связки и, или.
«Математика в историческом развитии»
История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.
Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.
Геометрия:
Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильныемногогранники. Примеры развёрток многогранников, цилиндра и конуса.
Понятие объёма; единицы объёма. Объём прямоугольногопараллелепипеда, куба.
Геометрические фигуры. Прямые и углы. Точка, прямая,плоскость. Отрезок, луч. Угол. Виды углов. Вертикальныеи смежные углы. Биссектриса угла.
Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярностипрямых. Перпендикуляр и наклонная к прямой. Серединныйперпендикуляр к отрезку.
Геометрическое место точек. Свойства биссектрисы углаи серединного перпендикуляра к отрезку.
Треугольник. Высота, медиана, биссектриса, средняя линиятреугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.Признаки равенства треугольников. Неравенство треугольника.Соотношения между сторонами и углами треугольника.
Сумма углов треугольника. Внешние углы треугольника.Теорема Фалеса. Подобие треугольников. Признаки подобиятреугольников. Теорема Пифагора. Синус, косинус, тангенс,котангенс острого угла прямоугольного треугольника и угловот 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теоремакосинусов и теорема синусов. Замечательные точки треугольника.
Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки.Трапеция, средняя линия трапеции.
Многоугольник. Выпуклые многоугольники. Сумма угловвыпуклого многоугольника. Правильные многоугольники.
Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол, величина вписанного угла. Взаимноерасположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные иописанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанныеи описанные окружности правильного многоугольника.
Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии,параллельный перенос, поворот. Понятие о подобии фигури гомотетии.
Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построениеугла, равного данному; построение треугольника по трём сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на n равных частей.
Решение задач на вычисление, доказательство и построениес использованием свойств изученных фигур.
Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельнымипрямыми.
Периметр многоугольника.
Длина окружности, число π; длина дуги окружности.
Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.
Понятие площади плоских фигур. Равносоставленные иравновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношениемежду площадями подобных фигур.
Решение задач на вычисление и доказательство с использованием изученных формул.
Координаты. Уравнение прямой. Координаты серединыотрезка. Формула расстояния между двумя точками плоскости.
Уравнение окружности.
Векторы. Длина (модуль) вектора. Равенство векторов.Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двумнеколлинеарным векторам. Скалярное произведение векторов.
Теоретико-множественные понятия. Множество, элементмножества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объединение ипересечение множеств.
Элементы логики. Определение. Аксиомы и теоремы.Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Понятие о равносильности, следовании, употребление логических связокесли ..., то ..., в том и только в том случае, логические связки и, или.
Геометрия в историческом развитии. От землемерия кгеометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение.«Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.
Изобретение метода координат, позволяющего переводитьгеометрические объекты на язык алгебры. Р. Декарт и П. Ферма.Примеры различных систем координат на плоскости.
6. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
7. УЧЕБНО-МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
Учебно-методическое обеспечение:
Программы
- Бурмистрова Т.А., Алгебра. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных организаций / Т.А. Бурмистрова. – М.: Просвещение, 2014.
- Бурмистрова Т.А., Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных организаций / Т.А. Бурмистрова. – М.: Просвещение, 2014.
Учебники
- Макарычев Ю.Н., Алгебра. 7 класс: учебник для общеобразовательных организаций / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова/ Под ред. Теляковского С.А.. – М.: Просвещение, 2014.
- Макарычев Ю.Н., Алгебра. 8 класс: учебник для общеобразовательных организаций / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова/ Под ред. Теляковского С.А.. – М.: Просвещение, 2014.
- Макарычев Ю.Н., Алгебра. 9 класс: учебник для общеобразовательных организаций / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова/ Под ред. Теляковского С.А.. – М.: Просвещение, 2014.
- Атанасян Л.С., Геометрия. 7 – 9 классы: учебник для общеобразовательных организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев. – М.: Просвещение, 2015.
Методические пособия для учителя:
- Макарычев Ю.Н., Уроки алгебры: книга для учителя / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова/ Под ред. Теляковского С.А.. – М.: Просвещение, 2014.
- Атанасян Л.С., Геометрия: пособие для учителя / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев. – М.: Просвещение, 2015.
Материально-техническое обеспечение:
Технические средства
- Стационарный компьютер (рабочее место преподавателя).
- Мультимедиа-проектор (рекомендуется потолочное крепление) в комплекте с интерактивной доской.
- Оснащенный в соответствии ФГОС кабинет математики.
8. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ПРЕДМЕТА
Выпускник научится:
- понимать особенности десятичной системы счисления;
- владеть понятиями, связанными с делимостью натуральных чисел;
- выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
- сравнивать и упорядочивать рациональные числа;
- выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
- использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
- использовать начальные представления о множестве действительных чисел;
- владеть понятием квадратного корня, применять его в вычислениях.
- использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
- владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
- выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленамии алгебраическими дробями;
- выполнять разложение многочленов на множители.
- решать основные виды рациональных уравнений с однойпеременной, системы двух уравнений с двумя переменными;
- понимать уравнение как важнейшую математическуюмодель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследованияуравнений, исследования и решения систем уравнений с двумяпеременными.
- понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
- решать линейные неравенства с одной переменной и ихсистемы; решать квадратные неравенства с опорой на графические представления;
- применять аппарат неравенств для решения задач из различных разделов курса.
- понимать и использовать функциональные понятия иязык (термины, символические обозначения);
- строить графики элементарных функций; исследоватьсвойства числовых функций на основе изучения поведения ихграфиков;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира,применять функциональный язык для описания и исследования зависимостей между физическими величинами.
- понимать и использовать язык последовательностей (термины, символические обозначения);
- применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный приизучении других разделов курса, к решению задач, в том числес контекстом из реальной жизни.
- использовать простейшие способыпредставления и анали